

Electric Power Fundamentals (Instructor-Led Training)

Course Description

This course introduces electric power fundamentals to technicians new to the natural gas industry. It includes discussions about basic electrical theory, test equipment, and grounding practices.

Course Prerequisites

- GTA Web-Based Training
 - Electric Power Fundamentals-AC Generation
 - o Electric Power Fundamentals-Basic Electrical Theory
 - o Electric Power Fundamentals-Controlling Motor Starting
 - o Electric Power Fundamentals-Electrical Safety
 - o Electric Power Fundamentals-Grounding Practices Fundamentals
 - o Electric Power Fundamentals-Motor Control Fundamentals
 - o Electric Power Fundamentals-RLC Circuits & Transformer
 - Electric Power Fundamentals-Test Equipment

Course Objectives

Upon completion of this course, the student will have received instruction designed to assist him/her in the following:

- Define Ohm's law.
- Describe the operation of AC generators.
- Describe the operation of inductors and capacitors in series and parallel circuits.
- Describe the operation and types of transformers.
- Describe the operation of AC and DC motors.
- Describe motor controllers.
- Describe the operation of full-voltage and soft-volage starters.
- Describe types of test equipment.
- Describe components of electric shock.
- Describe grounding systems and grounding problems.

Course Outline

- 1. Basic Electrical Theory
 - a. Electrical Concepts
 - i. Atom
 - ii. Conductors and Insulators
 - iii. Voltage
 - iv. Current
 - b. Resistance and Resistors
 - i. Factors Affecting Resistance
 - ii. Nature of Conducting Material
 - iii. Length and Cross-Sectional Area of a Conductor
 - iv. Uses of Resistance
 - v. Ohm's Law
 - c. Electrical Circuits
 - i. Series Circuits
 - ii. Parallel Circuits
 - iii. Combination Circuits
 - 1. Reducing a Combination Circuit
 - 2. Finding Voltage and Current
 - d. Kirchhoff's Laws
 - e. Magnetism
 - i. Basic Properties of Magnetic Flux
 - ii. Magnetic Fields around Current-Currying Conductors
 - iii. Right-Hand Rule for a Current-Carrying Conductor
 - iv. Magnetic Field of a Coil
- 2. AC Generation
 - a. Elementary AC Generators
 - i. Development of a Sine Wave Output
 - ii. AC Generation Analysis
 - iii. AC Generator Components

- 1. Field
- 2. Armature
- 3. Prime Mover
- 4. Rotor
- 5. Stator
- 6. Slip Rings
- b. Three-Phase Circuits
- 3. RLC Circuits
 - a. Inductors and Inductance
 - b. Inductive Reactance and Impedance
 - c. Capacitors and Capacitance
 - i. Capacitors in Series and Parallel
 - ii. Capacitive Reactance and Impedance
 - iii. Impedance of Series RLC Circuits and of Parallel RLC Circuits
 - d. Power Factor
- 4. Transformers
 - a. Theory of Transformer Operation
 - b. Transformer Functions and Ratios
 - c. Types of Transformers
 - i. Distribution Transformer
 - ii. Power Transformer
 - iii. Control Transformer
 - iv. Auto Transformer
 - v. Isolation Transformer
 - vi. Instrument Potential Transformer
 - vii. Instrument Current Transformer
- 5. AC and DC Motor Fundamentals
 - a. Direct Current Motors
 - b. Counter EMF
 - c. Effect on Starting Current

- d. Armature Reaction
- e. Direction of Rotation of DC Motors
 - i. DC Motor Directional Connections
- f. Series Wound Motors
 - i. Direct Current Compound Wound Motor
- g. Types of DC Motors
- h. Alternating Current Motors
 - i. AC Motor Theory
 - ii. Rotating Fields
 - 1. Rotor Behavior in a Rotating Field
- i. Induction
 - i. Induction Motors
 - 1. Construction
 - a. Stator
 - b. Rotor
 - c. Torque
 - 2. Starting Current
 - 3. Power Factor
 - 4. Speed Control
 - 5. Reversing Rotation
 - ii. Connections and Terminal Markings for AC Motors
- j. Single-Phase Motors
 - i. Split-Phase Motor
 - ii. Capacitor Start
 - iii. Shaded-Pole
- k. Three-Phase Wye Connection
- I. Three-Phase Delta Connection
- m. Two-Phase Double-Voltage Connection
- n. Motor Protection
 - i. Short-Circuit Protection of Stator Windings

- ii. Stator-Overheating Protection
- iii. Rotor-Overheating Protection
- iv. Wound-Rotor Induction Motors
- o. Undervoltage Protection
- p. Thermal Protectors
- q. AC Motor Nameplate
- r. DC Motors Nameplate
- 6. Motor Control Fundamentals
 - a. Motor Control Functions
 - b. Types of Controllers
 - i. Semiautomatic Controller
 - ii. Automatic Controller
 - c. Control Devices and Symbols
 - i. Primary Control and Pilot Control Devices
 - ii. Contacts
 - iii. Pushbutton Switches
 - iv. Toggle Switches
 - v. Indicating Lights
 - vi. Coils, Relays, and Contactors
 - d. Magnetic Contactors
 - i. Types of Magnetic Contactors
 - ii. Magnetic Coil Control Circuits
 - iii. Holding Circuit Interlocks
 - iv. Interlocks
 - v. Overloads
 - 1. Melting Pot Type Thermal Overload
 - 2. Bimetallic Element Type Overload
 - 3. Magnetic Type Overloads
 - e. Factors Affecting Selection of Overload Heaters and Thermal Units
 - f. Control Circuits

- i. Diagrams
- ii. Circuit Analysis
 - 1. Three-Wire Control
- iii. Common Control
 - 1. Control Power Transformers
 - 2. Hand-Off-Auto Controls
- 7. Controlling Motor Starting
 - a. Full-Voltage Starters
 - b. Control Power
 - c. Soft-Start Reduced Voltage Controllers
 - d. Soft-Start Applications
 - e. Benefits of Using Soft Start Starters:
 - f. Typical Fixed Speed Applications:
 - g. Other Reduced Voltage Starting Methods
 - h. Controllers and Starters: Theory and Application
 - i. Soft-Start Controller and Starter
 - ii. Benefits of Using Soft-Start Controllers and Starters
 - iii. Basic Principles of Soft Start
- 8. Test Equipment
 - a. Multimeters
 - i. Resolution, Digits, and Counts
 - ii. Accuracy
 - iii. DC and AC Voltage
 - iv. Resistance
 - v. Continuity
 - b. Diode Test
 - i. Measuring Current
 - ii. Input Protection
 - iii. Voltage Testers
 - iv. Continuity Testers

- c. Ammeters
- d. High Voltage Detector
- e. Megohmmeters
- 9. Electrical Safety
 - a. Electrical Shock and Emergency Response
 - i. Shock Hazard Severity
 - ii. Magnitude
 - iii. Duration
 - iv. Path
 - v. Skin-Resistance
 - vi. Contact Area
 - vii. Skin Moisture
 - b. Source Voltage
 - c. Lockout/Tagout
 - d. Electrical Safe Work Practices
 - i. Arc Flash
 - e. Emergency Response and CPR-Qualified Personnel
- 10. Grounding Practices
 - a. Grounds and Grounding
 - i. Grounding Requirements
 - ii. Ground Fault Detection
 - b. Life Protection (GFCI)
 - c. Equipment Protection
 - d. Solidly and Impedance Grounding Systems
 - i. Installation
 - e. Grounding Electrode System Requirements
 - i. Testing the Grounding Electrode Resistance to Earth
 - ii. Testing Ground Continuity Connections
 - iii. Location and Sizing Grounded Conductors
 - f. Bonding Jumpers

- g. Grounding Conductors
 - i. Enclosure and Equipment Grounding
- h. Grounding Equipment and Enclosures
- i. Motor Connections
- j. Grounded Neutral
- k. Ground Fault Circuit Interrupters
- I. Common Grounding Problems
 - i. Instrumentation Electrical Noise
 - ii. Stray Circulating Currents in Grounding Systems
 - iii. Grounding Corrosion
 - iv. Cathodic Protection
- m. Pipeline Coating

Recommended Resources

- GTA Electric Power Fundamentals Participant Guide
- GTA Electric Power Fundamentals Presentation.
- Internet sites related to basic industrial electrical Theory.
- Textbooks or other publications related to Industrial electrical theory and practice.