

Flow Measurement Fundamentals (Instructor-Led Training)

Course Description

This Course introduces you to the fundamentals of flow measurement and provides and overview measurement equipment used in the natural gas pipeline industry.

Course Prerequisites

- GTA Web-Based Training
 - Core WBT
 - Flow Measurement Fundamentals
 - Gas Properties 1
- GTA Instructor-Led Training
 - Drawing Sets and Print Reading
 - o Basic Measurement

Course Objectives

Upon completion of this course, the student will have received instruction designed to assist him/her in the following:

- Describe the history behind flow measurement.
- Explain the fundamental units of measurement used in the natural gas industry.
- Define the properties of natural gas.
- Describe the basic gas laws that pertain to natural gas and perform calculations for pressure, temperature, and volume.
- Describe the different types of meters used for measurement.
- Explain the three Rs in flow measurement.
- Explain meter station drawings.
- Explain SCADA.

Course Outline

- 1. Flow Measurement
 - a. Why We Need Flow Measurement
 - b. Pioneers of Flow Measurement
- 2. Units of Measurement
 - a. Pressure
 - i. Atmospheric Pressure
 - ii. Gauge Pressure
 - iii. Absolute Pressure
 - iv. Differential Pressure
 - v. Vacuum
 - vi. Head Pressure
 - b. Temperature
 - i. Fahrenheit and Celsius Scales
 - ii. Rankine and Kelvin Scales
 - c. Viscosity, Volume, Mass, Molecular Weight, and Density
 - d. Compressibility
 - e. Water Dew Point
 - f. Hydrocarbon Dew Point
 - g. Sound Speed
 - h. Specific Gravity
 - i. Ideal Specific Gravity
 - j. Flow Rate
 - k. British Thermal Unit
 - I. Heating Value
 - m. Standard Cubic Foot
- 3. Chemical Properties of Natural Gas
- 4. Gas Laws
 - a. Introduction to Gas Laws
 - b. Boyle's Law

- c. Charles' Law
- d. Ideal Gas Law
- 5. Flow Measurement Devices
 - a. Orifice Flow Meter's Operating Principle
 - i. Orifice Meters Advantages
 - ii. Orifice Meters Disadvantages
 - iii. Orifice Meters Precautions
 - iv. Orifice Meter Measurement Components
 - 1. Meter Tube
 - 2. Orifice Plate-Holding Device
 - a. Flanged Fitting
 - b. Single-Chamber Orifice Plate Holder ("Simplex")
 - c. Single-Chamber Orifice Fitting ("Junior")
 - d. Dual-Chamber Orifice Fitting ("Senior")
 - 3. Orifice Plate
 - b. Pressure Taps
 - i. Flange Taps
 - ii. Corner Taps
 - iii. Vena Contracta Taps
 - iv. Radius Taps
 - v. Pipe Taps
 - c. Flow Conditioning Devices
 - i. Straightening Vanes Type Flow Conditioners
 - ii. Plate Type-Flow Conditioners
 - d. Effects of Abnormal Conditions on Orifice Meters
 - i. Orifice Plate Installed Backward
 - ii. Orifice Plate Edge Sharpness
 - iii. Notches or Groves on the Sharp Edge
 - iv. Bent or Warped Orifice Plate
 - v. Rough Orifice Plate

- vi. Grease Deposits on the Orifice Plate
- vii. Liquid Film on the Orifice Plate and in the Meter Tube
- viii. Free Liquids
- e. AGA 3 Recommendations
 - i. Meter Tube Internal Diameter
 - ii. Diameter Ratio
 - iii. Tap Holes
 - iv. Meter Tap Location
 - v. Roughness Average
 - vi. The Three Rs for Meter Tube Gas Flow Measurement
 - 1. Reliability (Uncertainty/Accuracy)
 - 2. Rangeability
 - 3. Repeatability
- f. Orifice Plate Faces
 - i. Flatness
 - ii. Roughness
 - iii. Cleanliness
- g. Bore Edge
 - i. Bore Diameter (dm dr)
 - ii. Bore Thickness
- h. Plate Thickness
- i. Plate Bevel
- j. Orifice Plate Eccentricity
- k. Linear Meters
 - i. Turbine Flow Meters
 - 1. Turbine Meter Construction and Operation
 - 2. Body
 - 3. Nose Cone
 - 4. Label Plates
 - 5. Measuring Mechanism

- 6. Output and/or Readout Device
- 7. Turbine Meter Advantages
- 8. Turbine Meter Disadvantages
- ii. Effects of Abnormal Conditions on Turbine Meters
 - 1. Swirl Effect
 - 2. Velocity Profile Effect
 - 3. Fluid Drag Effect
 - 4. Non-fluid Drag Effect
 - 5. Pulsation Effects
- iii. Mechanical Defects
- iv. Grease Deposits or Contaminants
- v. Free Liquids
- I. Positive Displacement Meters
 - i. Multi-Rotor Meters
 - ii. Diaphragm Meters
 - iii. Linear Meter Equations
 - 1. Pressure
 - 2. Temperature
 - 3. Specific Gravity
 - iv. Effects of Abnormal Conditions on Positive Displacement Meters
 - 1. Pulsation Effects
 - 2. Mechanical Defects
 - v. Grease Deposits or Contaminants
 - vi. Free Liquids
- m. Summary of Abnormal Conditions
- n. Coriolis Meter
- o. Averaging Pitot Meters
- p. Vortex Meter
- q. V-Cone Meter
- r. Mcf and the Positive or Turbine Meter Index

- s. Ultrasonic Flow Meters
- t. Ultrasonic Meter Flow Calculation
- u. Ultrasonic Meter Transit Time Calculation
- v. General Requirements for Accurate Ultrasonic Flow Measurement
- w. Advantages of Ultrasonic Flow Meters
- x. Disadvantages
- 6. Meter Station Drawings
 - a. Introduction to SCADA
 - b. SCADA
 - c. RTU
 - d. Analog Inputs
 - e. Digital Inputs
 - f. High-Speed Counter Inputs
 - g. Analog Outputs
 - h. Discrete Outputs
 - i. RTU Functions
 - j. EGM
 - k. Run Switching
 - I. Gas Sampling and Totalization
 - m. Gas Odorization
 - n. PID Regulator Control
 - o. Customer Interfaces
 - p. Flow/Pressure Control
 - q. PID Control Basics
 - r. Proportional or Gain (P)
 - s. Integral or Reset (I)
 - t. Derivative (D)
 - u. PID Process
 - v. Set point
 - w. Error Signal Calculated

- x. Proportional Action (Gain)
- y. Integral Action
- z. Output
- aa. Feedback Loop
- bb. Communication and Gas Property Downloads and Zoning
- cc. Polling and Updating Frequencies

Recommended Resources

- GTA Flow Measurement Fundamentals Participant Guide
- GTA Measurement Fundamentals Instructor Presentation.
- AGA Reports 3, 5, 7, 8, 9, 10, GPA Standards 2145, 2166, and API MPMS Chapter 14.1.
- Internet sites related to flow measurement, fluid properties or flow meter types.
- Textbooks or other publications related to flow measurement, fluid properties or flow meter types.