

Instrumentation Systems (Instructor-Led Training)

Course Description

This course introduces instrumentation systems to technicians new to the natural gas industry.

Course Prerequisites

- GTA Web-Based Training
 - o Core WBT
 - Statistics and Uncertainty
 - Instrumentation Systems
- GTA Instructor-Led Training
 - Drawing Sets and Print Reading
 - o Electric Power Fundamentals

Course Objectives

Upon completion of this course, the student will have received instruction designed to assist him/her in the following:

- Explain the purpose of instrumentation and control in the natural gas pipeline industry.
- Explain the environmental and safety concerns required for technicians working on natural gas pipeline components.
- Explain the three control variables commonly used in measurement.
- Define the terms used in instrumentation.
- Explain secondary measurement devices.
- Explain the need for calibrating instruments and control loops.
- Explain the test equipment used for instrumentation testing and calibration.
- Describe and give examples of an instrument loop.
- Describe a control loop and its use in process control.

Course Outline

- 1. Instrumentation and Control
- 2. Environmental and Safety Concerns
- 3. Instrumentation Units of Measurement
 - a. Pressure
 - b. Atmospheric Pressure
 - c. Absolute Pressure
 - d. Gauge Pressure
 - e. Differential Pressure
 - f. Vacuum
 - g. Head Pressure
 - h. Temperature
 - i. Fahrenheit and Celsius Scales
 - ii. Rankine and Kelvin Scales
 - i. Flow
 - i. Properties of Fluid Used to Calculate Flow
 - j. Volume
 - k. Density
 - I. Specific Gravity
 - m. Flow Rate
 - i. Volumetric Flow Rate
 - ii. Mass Flow Rate
- 4. Instrumentation Terms
 - a. Instrument Error
 - b. Absolute Error
 - c. Uncertainty Error
 - d. Observation Error
 - e. Zero Error
 - f. Range
 - g. Span Error

- h. Hysteresis
- i. Linear
- j. Non-linearity
- k. Deadband
- I. Accuracy
- m. Precision
- n. Turndown
- o. Rangeability
- p. Resolution
- q. Transfer Function
- r. Sensitivity
- s. Calibration
- t. Traceability
- u. Ampere-hour and Milliampere-hour
- v. Milliamp (mA)
- w. Direct Current (DC)

5. Measurement Devices

- a. Manometer
- b. Bourdon Tubes
- c. Diaphragms
- d. Orifice Plate
- e. Temperature Devices
- f. Resistance Temperature Detectors
- g. Transmitters
- h. Zero Suppression and Elevation

6. Calibration

- a. Good Calibration Setup
- b. Elements of the Calibration Procedure
- c. Input and Output Signal Span
- d. Recalibration

- e. Accuracy in Calibration
 - i. Formula for Accuracy
- f. Gain
- g. Precision Process Instruments
- h. Instrument Errors
- i. Zero Shift and Span Error
- j. Deadband
- k. Hysteresis
- I. Non-linearity
- m. Instrument Adjustments
- 7. Test Equipment Used For Calibration
 - a. Digital Multimeter
 - b. DC Volt Measurement
 - c. DC Milliamperes
 - d. Digital Pressure Gauge
 - e. Pressure Sources
 - f. Deadweight Tester
 - g. Current/Millivolt Source
 - h. Decade Boxes
 - i. Dry Block Calibrators
 - j. Multifunction Calibrator
 - k. Thermocouple and RTD Calibrators
 - I. HART Communicator
 - m. Smart Transmitter Overview
 - n. Advantages and Disadvantages
- 8. Instrument Loops
 - a. Transmitters
 - b. Pressure Switches
 - c. Electromechanical Switches
 - d. Diaphragm Switches

- e. Bourdon Tube Switches
- f. Diaphragm-Sealed Piston Switches
- g. Piston Switches
- h. Temperature Transmitters
- i. Transmitter Options
- j. Thermocouple
- k. RTD and Advantages of RTDs
- I. Flow Transmitters
- m. Differential Pressure Transducer

9. Control Loops

- a. Process Control and Instrumentation Used
- b. Control Variables
- c. Control Elements
- d. Feedback Control Loop
- e. Cascade Control Loop
- f. Feedback and Feedforward Control
- g. Types of Automatic Control
- h. On-Off Action
- i. Proportional Action (Gain)
- j. Proportional Action with Reset (Integral)
- k. Proportional Action with Reset and Rate (Derivative)

Recommended Resources

- GTA Instrumentation Systems Participant Guide
- GTA Instrumentation Systems Instructor Presentation.
- Internet sites and textbooks related to industrial instrumentation systems.