

Basic Programmable Logic Controllers (PLCs) (Instructor-Led Training)

Course Description

This course teaches the basic functionalities and capabilities of Programmable Logic Controllers (PLCs), which are now an integral part of the industrial environment.

Course Prerequisites

- GTA Web-Based Training
 - Communication and Protocols I
 - Communication and Protocols II
- Instructor-Led Training
 - o Control Systems PID Control

Course Objectives

Upon completion of this course, the student will have received instruction designed to assist him/her in the following:

- Describe the history of PLCs in industry.
- Describe the function and purpose of PLCs.
- List the basic components of a PLC.
- Describe the basic operation of a PLC (block diagram level).
- Explain the advantages of a PLC system compared to a typical hardwired system.
- Describe how to connect an analog module.
- Connect power to the PLC using the procedure provided.
- Describe how a PLC communicates with a field device.
- Explain how points are addressed.
- Describe PLC processor indicators.
- Describe PLC communications.
- Select proper cabling when connecting a PLC to a laptop.
- Describe how to use XIO, XIC, OTE, Latch, Timers, Counters, Moves, Arithmetic Commands, MCRs, and Subroutines

Course Outline

- 1. Programmable Logic Controller (PLC) Overview
 - a. What is a PLC?
 - b. History of the PLC
 - c. Advantages of PLCs
 - d. Components of a PLC
 - e. Input/Output Modules
 - f. Central Processing Unit (CPU)
 - g. Co-processor Modules
 - h. Software
 - i. Peripheral Device
 - j. Basic Operation of a PLC
 - k. Ladder Logic of a Hardwired System
 - I. Simple Ladder Diagram of a Hardwired Circuit
- 2. PLC Operations
 - a. Basic Operation
 - b. Operational Sequence
 - c. The Scan Cycle
 - d. Logic Scan
- 3. PLC Hardware
 - a. PLC Components
 - b. Power Supply
 - c. Input/Output Modules
 - i. Input Modules
 - 1. Input Module Wiring
 - 2. Input Indicators
 - ii. Output Module
 - 1. Output Module Wiring
 - d. Discrete Modules
 - i. Discrete Module Wiring

- e. Numerical Data Modules
- f. AC/DC Input Modules
 - i. AC Input Modules
 - ii. DC Input (Discrete) Modules
 - iii. DC Input (Analog) Modules
- g. AC/DC Output Modules
 - i. AC Output Modules
- h. DC Output Modules (Discrete)
 - i. DC Output Modules (Analog)
- i. Proportional Integral and Derivative (PID) Processor Module
- j. Controls and Indicators
- k. Scanning
- I. User Program
- 4. Addressing and Number Systems
 - a. Types of Number Systems
 - i. Octal
 - 1. Decimal to Octal/Octal to Decimal Conversion
 - 2. Binary to Octal/Octal to Binary Conversion
 - ii. Hexadecimal
 - 1. Binary-Coded Decimal
 - iii. Addressing
 - 1. Addressing Terminology
- 5. PLC Communications
 - a. PLC Communication Description
 - b. PLC Communication Protocols
 - c. PLC Networking
 - i. DeviceNet
 - ii. ControlNet
 - iii. Ethernet
 - d. Data Highway Plus (DH+)

- e. PLC Terms
- f. Remote I/O Configurations
- g. Peer-to-Peer Configurations
- h. Host Computer

6. PLC Software

- a. Software vs. Firmware
- b. HMI (Human Machine Interface)
- c. Ladder Logic Diagrams
- d. Logic Instructions
- e. Relays
- f. Examine If Closed (XIC)
- g. Examine If Open (XIO)
- h. Output Energized (OTE)
- i. Timers
 - i. Timer On Delay (TON)
 - ii. Timer Off Delay (TOF)
 - iii. Retentive Timer On (RTO)
- j. Counters
 - i. Count Up Counter (CTU)
 - ii. Count Up Counter (CTD)
 - iii. Reset Command (RES)
- k. Data Transfer Instructions
 - i. Arithmetic Commands
- I. Data Manipulation Instructions
 - i. Master Control Reset
- m. Program Control Instructions
 - i. Subroutines

Recommended Resources

- GTA Basic PLCs Participant Guide
- GTA Basic PLCs Instructor Presentation.
- Internet sites related to Programmable Logic Controllers.
- Textbooks or other publications related to Programmable Logic Controllers.