

Control Systems/PID Control (Instructor-Led Training)

Course Description

This course familiarizes the student with industrial process control systems and a variety of controllers that operate on different fundamental concepts. Each of these controllers is unique and affects the process it controls in a different manner than the others. Understanding the fundamental operational concepts behind each controller will help solve process-related problems in the field and will allow the optimization of process control systems to their specific applications.

Course Prerequisites

- GTA Web-Based Training
 - Communication and Protocols I
 - Communication and Protocols II
- GTA Instructor-Led Training
 - Basic Instruments and Control Loops

Course Objectives

Upon completion of this course, the student will have received instruction designed to assist him/her in the following:

- Describe terminology associated with control loop tuning.
- Explain the difference between dead time and time constant.
- Describe open-loop control system characteristics.
- Describe closed-loop control system characteristics.
- Describe negative and positive feedback functions.
- Operate and tune a control loop using a two-position controller.
- Operate and tune a control loop using a proportional controller.
- Operate and tune a control loop using a proportional and integral controller.
- Operate and tune a control loop using a PID controller.

Course Outline

- 1. Process Control Systems
 - a. Fundamentals of Control Loops
 - b. Variables
 - c. Dynamic Response
 - d. Dead Time
 - e. Rise Time
 - f. Time Constant
 - g. Process Control System
 - h. Disturbances
 - i. Block Diagrams
 - j. Open-loop Control Systems
 - k. Closed-loop Control Systems
 - I. Positive Feedback
 - m. Negative Feedback
 - n. Feed-forward vs Feedback
 - o. Closed-loop Control Operation
 - p. Self-regulating Process
 - q. Stability and Instability
 - r. Closed-loop Control Quality Criteria
 - s. Single-capacity Process
 - t. Process Gain
 - u. Two-capacity Process
 - v. Multiple-capacity Process
- 2. Modes of Control
 - a. Two-position Control
 - i. Open-loop Characteristics
 - ii. Closed-loop Characteristics
 - b. Proportional Control
 - i. Open-loop Characteristics

- ii. Closed-loop Characteristics
- c. Proportional Plus Integral Control
 - i. Open-loop Characteristics
 - ii. Closed-loop Characteristics
- d. Proportional Plus Integral Plus Derivative Control Mode
 - i. Open-loop Characteristics
 - ii. Closed-loop Characteristics
- 3. Control Loop Tuning
 - a. Mathematical Tuning Method
 - i. Testing Method
 - ii. Stability Factors
 - b. Controller Tuning
 - i. Notch Method
 - ii. Ultimate Period Method
 - iii. Dampened Oscillation Method
 - c. Open-loop Tuning
 - i. Time Constant Method
 - ii. Reaction Rate Method
 - d. Analog Controllers
 - e. ON/OFF
 - f. Proportional
 - i. Proportional Controller with Reset
 - ii. Proportional Controller with Reset and Derivative
 - g. Bailey 701
 - h. Stand-Alone Digital Controllers
 - i. Foxboro 762
 - i. General Information
 - j. Display and Keypad Functions
 - k. Cabling, Twisted-Pair, Coaxial, and Fiber Optic
 - I. Cable Installation Guidelines

Recommended Resources

- GTA Control Systems/PID Control Participant Guide
- GTA Control Systems/PID Control Instructor Presentation.
- Internet sites related to industrial control systems.
- Textbooks or other publications related to industrial control systems.